Vehicle trajectories can offer the most precise and detailed depiction of traffic flow and serve as a critical component in traffic management and control applications. Various technologies have been applied to reconstruct vehicle trajectories from sparse fixed and mobile detection data. However, existing methods predominantly concentrate on single-lane scenarios and neglect lane-changing (LC) behaviors that occur across multiple lanes, which limit their applicability in practical traffic systems. To address this research gap, we propose a macro-micro approach for reconstructing complete vehicle trajectories on multi-lane freeways, wherein the macro traffic state information and micro driving models are integrated to overcome the restrictions imposed by lane boundary. Particularly, the macroscopic velocity contour maps are established for each lane to regulate the movement of vehicle platoons, meanwhile the velocity difference between adjacent lanes provide valuable criteria for guiding LC behaviors. Simultaneously, the car-following models are extended from micro perspective to supply lane-based candidate trajectories and define the plausible range for LC positions. Later, a two-stage trajectory fusion algorithm is proposed to jointly infer both the car-following and LC behaviors, in which the optimal LC positions is identified and candidate trajectories are adjusted according to their weights. The proposed framework was evaluated using NGSIM dataset, and the results indicated a remarkable enhancement in both the accuracy and smoothness of reconstructed trajectories, with performance indicators reduced by over 30% compared to two representative reconstruction methods. Furthermore, the reconstruction process effectively reproduced LC behaviors across contiguous lanes, adding to the framework's comprehensiveness and realism.