By consolidating scattered knowledge, the literature review provides a comprehensive understanding of the investigated topic. However, excessive reviews, especially in the booming field of pattern analysis and machine intelligence (PAMI), raise concerns for both researchers and reviewers. In response to these concerns, this Analysis aims to provide a thorough review of reviews in the PAMI field from diverse perspectives. First, large language model-empowered bibliometric indicators are proposed to evaluate literature reviews automatically. To facilitate this, a meta-data database dubbed RiPAMI, and a topic dataset are constructed, which are utilized to obtain statistical characteristics of PAMI reviews. Unlike traditional bibliometric measurements, the proposed article-level indicators provide real-time and field-normalized quantified assessments of reviews without relying on user-defined keywords. Second, based on these indicators, the study presents comparative analyses of different reviews, unveiling the characteristics of publications across various fields, periods, and journals. The newly emerging AI-generated literature reviews are also appraised, and the observed differences suggest that most AI-generated reviews still lag behind human-authored reviews in several aspects. Third, we briefly provide a subjective evaluation of representative PAMI reviews and introduce a paper structure-based typology of literature reviews. This typology may improve the clarity and effectiveness for scholars in reading and writing reviews, while also serving as a guide for AI systems in generating well-organized reviews. Finally, this Analysis offers insights into the current challenges of literature reviews and envisions future directions for their development.