In this paper, the problem of low-latency communication and computation resource allocation for digital twin (DT) over wireless networks is investigated. In the considered model, multiple physical devices in the physical network (PN) needs to frequently offload the computation task related data to the digital network twin (DNT), which is generated and controlled by the central server. Due to limited energy budget of the physical devices, both computation accuracy and wireless transmission power must be considered during the DT procedure. This joint communication and computation problem is formulated as an optimization problem whose goal is to minimize the overall transmission delay of the system under total PN energy and DNT model accuracy constraints. To solve this problem, an alternating algorithm with iteratively solving device scheduling, power control, and data offloading subproblems. For the device scheduling subproblem, the optimal solution is obtained in closed form through the dual method. For the special case with one physical device, the optimal number of transmission times is reveled. Based on the theoretical findings, the original problem is transformed into a simplified problem and the optimal device scheduling can be found. Numerical results verify that the proposed algorithm can reduce the transmission delay of the system by up to 51.2\% compared to the conventional schemes.