This paper presents a factor graph formulation and particle-based sum-product algorithm (SPA) for robust sequential localization in multipath-prone environments. The proposed algorithm jointly performs data association, sequential estimation of a mobile agent position, and adapts all relevant model parameters. We derive a novel non-uniform false alarm (FA) model that captures the delay and amplitude statistics of the multipath radio channel. This model enables the algorithm to indirectly exploit position-related information contained in the MPCs for the estimation of the agent position. Using simulated and real measurements, we demonstrate that the algorithm can provide high-accuracy position estimates even in fully obstructed line-of-sight (OLOS) situations, significantly outperforming the conventional amplitude-information probabilistic data association (AIPDA) filter. We show that the performance of our algorithm constantly attains the posterior Cramer-Rao lower bound (PCRLB), or even succeeds it, due to the additional information contained in the presented FA model.