Survivor bias in observational data leads the optimization of recommender systems towards local optima. Currently most solutions re-mines existing human-system collaboration patterns to maximize longer-term satisfaction by reinforcement learning. However, from the causal perspective, mitigating survivor effects requires answering a counterfactual problem, which is generally unidentifiable and inestimable. In this work, we propose a neural causal model to achieve counterfactual inference. Specifically, we first build a learnable structural causal model based on its available graphical representations which qualitatively characterizes the preference transitions. Mitigation of the survivor bias is achieved though counterfactual consistency. To identify the consistency, we use the Gumbel-max function as structural constrains. To estimate the consistency, we apply reinforcement optimizations, and use Gumbel-Softmax as a trade-off to get a differentiable function. Both theoretical and empirical studies demonstrate the effectiveness of our solution.