Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:Graph neural networks (GNNs) have drawn increasing attention in recent years and achieved remarkable performance in many graph-based tasks, especially in semi-supervised learning on graphs. However, most existing GNNs excessively rely on topological structures and aggregate multi-hop neighborhood information by simply stacking network layers, which may introduce superfluous noise information, limit the expressive power of GNNs and lead to the over-smoothing problem ultimately. In light of this, we propose a novel Dual-Perception Graph Neural Network (DPGNN) to address these issues. In DPGNN, we utilize node features to construct a feature graph, and perform node representations learning based on the original topology graph and the constructed feature graph simultaneously, which conduce to capture the structural neighborhood information and the feature-related information. Furthermore, we design a Multi-Hop Graph Generator (MHGG), which applies a node-to-hop attention mechanism to aggregate node-specific multi-hop neighborhood information adaptively. Finally, we apply self-ensembling to form a consistent prediction for unlabeled node representations. Experimental results on five datasets with different topological structures demonstrate that our proposed DPGNN outperforms all the latest state-of-the-art models on all datasets, which proves the superiority and versatility of our model. The source code of our model is available at https://github.com.