Abstract:A variety of attention mechanisms have been studied to improve the performance of various computer vision tasks. However, the prior methods overlooked the significance of retaining the information on both channel and spatial aspects to enhance the cross-dimension interactions. Therefore, we propose a global attention mechanism that boosts the performance of deep neural networks by reducing information reduction and magnifying the global interactive representations. We introduce 3D-permutation with multilayer-perceptron for channel attention alongside a convolutional spatial attention submodule. The evaluation of the proposed mechanism for the image classification task on CIFAR-100 and ImageNet-1K indicates that our method stably outperforms several recent attention mechanisms with both ResNet and lightweight MobileNet.
Abstract:Recognizing less salient features is the key for model compression. However, it has not been investigated in the revolutionary attention mechanisms. In this work, we propose a novel normalization-based attention module (NAM), which suppresses less salient weights. It applies a weight sparsity penalty to the attention modules, thus, making them more computational efficient while retaining similar performance. A comparison with three other attention mechanisms on both Resnet and Mobilenet indicates that our method results in higher accuracy. Code for this paper can be publicly accessed at https://github.com/Christian-lyc/NAM.