Abstract:This paper introduces an analog spiking neuron that utilizes time-domain information, i.e., a time interval of two signal transitions and a pulse width, to construct a spiking neural network (SNN) for a hardware-friendly physical reservoir computing (RC) on a complementary metal-oxide-semiconductor (CMOS) platform. A neuron with leaky integrate-and-fire is realized by employing two voltage-controlled oscillators (VCOs) with opposite sensitivities to the internal control voltage, and the neuron connection structure is restricted by the use of only 4 neighboring neurons on the 2-dimensional plane to feasibly construct a regular network topology. Such a system enables us to compose an SNN with a counter-based readout circuit, which simplifies the hardware implementation of the SNN. Moreover, another technical advantage thanks to the bottom-up integration is the capability of dynamically capturing every neuron state in the network, which can significantly contribute to finding guidelines on how to enhance the performance for various computational tasks in temporal information processing. Diverse nonlinear physical dynamics needed for RC can be realized by collective behavior through dynamic interaction between neurons, like coupled oscillators, despite the simple network structure. With behavioral system-level simulations, we demonstrate physical RC through short-term memory and exclusive OR tasks, and the spoken digit recognition task with an accuracy of 97.7% as well. Our system is considerably feasible for practical applications and also can be a useful platform for studying the mechanism of physical RC.
Abstract:Conventional neural structures tend to communicate through analog quantities such as currents or voltages, however, as CMOS devices shrink and supply voltages decrease, the dynamic range of voltage/current-domain analog circuits becomes narrower, the available margin becomes smaller, and noise immunity decreases. More than that, the use of operational amplifiers (op-amps) and clocked or asynchronous comparators in conventional designs leads to high energy consumption and large chip area, which would be detrimental to building spiking neural networks. In view of this, we propose a neural structure for generating and transmitting time-domain signals, including a neuron module, a synapse module, and two weight modules. The proposed neural structure is driven by leakage currents in the transistor triode region and does not use op-amps and comparators, thus providing higher energy and area efficiency compared to conventional designs. In addition, the structure provides greater noise immunity due to internal communication via time-domain signals, which simplifies the wiring between the modules. The proposed neural structure is fabricated using TSMC 65 nm CMOS technology. The proposed neuron and synapse occupy an area of 127 um2 and 231 um2, respectively, while achieving millisecond time constants. Actual chip measurements show that the proposed structure successfully implements the temporal signal communication function with millisecond time constants, which is a critical step toward hardware reservoir computing for human-computer interaction.