Abstract:Imagine there is a disruption in train 1 near Times Square metro station. You try to find an alternative subway route to the JFK airport on Google Maps, but the app fails to provide a suitable recommendation that takes into account the disruption and your preferences to avoid crowded stations. We find that in many such situations, current navigation apps may fall short and fail to give a reasonable recommendation. To fill this gap, in this paper, we develop a prototype, TraveLLM, to plan routing of public transit in face of disruption that relies on Large Language Models (LLMs). LLMs have shown remarkable capabilities in reasoning and planning across various domains. Here we hope to investigate the potential of LLMs that lies in incorporating multi-modal user-specific queries and constraints into public transit route recommendations. Various test cases are designed under different scenarios, including varying weather conditions, emergency events, and the introduction of new transportation services. We then compare the performance of state-of-the-art LLMs, including GPT-4, Claude 3 and Gemini, in generating accurate routes. Our comparative analysis demonstrates the effectiveness of LLMs, particularly GPT-4 in providing navigation plans. Our findings hold the potential for LLMs to enhance existing navigation systems and provide a more flexible and intelligent method for addressing diverse user needs in face of disruptions.