Abstract:Personalized Federated Learning (PFL) aims to train a personalized model for each client that is tailored to its local data distribution, learning fails to perform well on individual clients due to variations in their local data distributions. Most existing PFL methods focus on personalizing the aggregated global model for each client, neglecting the fundamental aspect of federated learning: the regulation of how client models are aggregated. Additionally, almost all of them overlook the graph structure formed by clients in federated learning. In this paper, we propose a novel method, Personalized Federated Learning with Graph Attention Network (pFedGAT), which captures the latent graph structure between clients and dynamically determines the importance of other clients for each client, enabling fine-grained control over the aggregation process. We evaluate pFedGAT across multiple data distribution scenarios, comparing it with twelve state of the art methods on three datasets: Fashion MNIST, CIFAR-10, and CIFAR-100, and find that it consistently performs well.
Abstract:Effective sentence embeddings that capture semantic nuances and generalize well across diverse contexts are crucial for natural language processing tasks. We address this challenge by applying SimCSE (Simple Contrastive Learning of Sentence Embeddings) using contrastive learning to fine-tune the minBERT model for sentiment analysis, semantic textual similarity (STS), and paraphrase detection. Our contributions include experimenting with three different dropout techniques, namely standard dropout, curriculum dropout, and adaptive dropout, to tackle overfitting, proposing a novel 2-Tier SimCSE Fine-tuning Model that combines both unsupervised and supervised SimCSE on STS task, and exploring transfer learning potential for Paraphrase and SST tasks. Our findings demonstrate the effectiveness of SimCSE, with the 2-Tier model achieving superior performance on the STS task, with an average test score of 0.742 across all three downstream tasks. The results of error analysis reveals challenges in handling complex sentiments and reliance on lexical overlap for paraphrase detection, highlighting areas for future research. The ablation study revealed that removing Adaptive Dropout in the Single-Task Unsupervised SimCSE Model led to improved performance on the STS task, indicating overfitting due to added parameters. Transfer learning from SimCSE models on Paraphrase and SST tasks did not enhance performance, suggesting limited transferability of knowledge from the STS task.