Abstract:This review surveys the state-of-the-art in text-to-image and image-to-image generation within the scope of generative AI. We provide a comparative analysis of three prominent architectures: Variational Autoencoders, Generative Adversarial Networks and Diffusion Models. For each, we elucidate core concepts, architectural innovations, and practical strengths and limitations, particularly for scientific image understanding. Finally, we discuss critical open challenges and potential future research directions in this rapidly evolving field.
Abstract:The integration of machine learning in magnetic resonance imaging (MRI), specifically in neuroimaging, is proving to be incredibly effective, leading to better diagnostic accuracy, accelerated image analysis, and data-driven insights, which can potentially transform patient care. Deep learning models utilize multiple layers of processing to capture intricate details of complex data, which can then be used on a variety of tasks, including brain tumor classification, segmentation, image synthesis, and registration. Previous research demonstrates high accuracy in tumor segmentation using various model architectures, including nn-UNet and Swin-UNet. U-Mamba, which uses state space modeling, also achieves high accuracy in medical image segmentation. To leverage these models, we propose a deep learning framework that ensembles these state-of-the-art architectures to achieve accurate segmentation and produce finely synthesized images.