Abstract:This letter proposes a block sparse Bayesian learning (BSBL) algorithm of non-circular (NC) signals for direction-of-arrival (DOA) estimation, which is suitable for arbitrary unknown NC phases. The block sparse NC signal representation model is constructed through a permutation strategy, capturing the available intra-block structure information to enhance recovery performance. After that, we create the sparse probability model and derive the cost function under BSBL framework. Finally, the fast marginal likelihood maximum (FMLM) algorithm is introduced, enabling the rapid implementation of signal recovery by the addition and removal of basis functions. Simulation results demonstrate the effectiveness and the superior performance of our proposed method.
Abstract:Image restoration under adverse weather conditions refers to the process of removing degradation caused by weather particles while improving visual quality. Most existing deweathering methods rely on increasing the network scale and data volume to achieve better performance which requires more expensive computing power. Also, many methods lack generalization for specific applications. In the traffic surveillance screener, the main challenges are snow removal and veil effect elimination. In this paper, we propose a wavelet-enhanced snow removal method that use a Dual-Tree Complex Wavelet Transform feature enhancement module and a dynamic convolution acceleration module to address snow degradation in surveillance images. We also use a residual learning restoration module to remove veil effects caused by rain, snow, and fog. The proposed architecture extracts and analyzes information from snow-covered regions, significantly improving snow removal performance. And the residual learning restoration module removes veiling effects in images, enhancing clarity and detail. Experiments show that it performs better than some popular desnowing methods. Our approach also demonstrates effectiveness and accuracy when applied to real traffic surveillance images.