Abstract:Large language models have exhibited intriguing in-context learning capability, achieving promising zero- and few-shot performance without updating the parameters. However, conventional in-context learning is usually restricted by length constraints, rendering it ineffective to absorb supervision from a large number of examples. In order to go beyond few shots, we introduce structured prompting that breaks the length limit and scales in-context learning to thousands of examples. Specifically, demonstration examples are separately encoded with well-designed position embeddings, and then they are jointly attended by the test example using a rescaled attention mechanism. So we can scale the number of exemplars with linear complexity instead of quadratic complexity with respect to length. Experimental results on a diverse set of tasks show that our approach improves end-task performance and reduces evaluation variance over conventional in-context learning as the number of demonstration examples increases. Code has been released at https://aka.ms/structured-prompting.
Abstract:In-context learning of GPT-like models has been recognized as fragile across different hand-crafted templates, and demonstration permutations. In this work, we propose prototypical calibration to adaptively learn a more robust decision boundary for zero- and few-shot classification, instead of greedy decoding. Concretely, our method first adopts Gaussian mixture distribution to estimate the prototypical clusters for all categories. Then we assign each cluster to the corresponding label by solving a weighted bipartite matching problem. Given an example, its prediction is calibrated by the likelihood of prototypical clusters. Experimental results show that prototypical calibration yields a 15% absolute improvement on a diverse set of tasks. Extensive analysis across different scales also indicates that our method calibrates the decision boundary as expected, greatly improving the robustness of GPT to templates, permutations, and class imbalance.