Abstract:Incomplete point clouds captured by 3D sensors often result in the loss of both geometric and semantic information. Most existing point cloud completion methods are built on rotation-variant frameworks trained with data in canonical poses, limiting their applicability in real-world scenarios. While data augmentation with random rotations can partially mitigate this issue, it significantly increases the learning burden and still fails to guarantee robust performance under arbitrary poses. To address this challenge, we propose the Rotation-Equivariant Anchor Transformer (REVNET), a novel framework built upon the Vector Neuron (VN) network for robust point cloud completion under arbitrary rotations. To preserve local details, we represent partial point clouds as sets of equivariant anchors and design a VN Missing Anchor Transformer to predict the positions and features of missing anchors. Furthermore, we extend VN networks with a rotation-equivariant bias formulation and a ZCA-based layer normalization to improve feature expressiveness. Leveraging the flexible conversion between equivariant and invariant VN features, our model can generate point coordinates with greater stability. Experimental results show that our method outperforms state-of-the-art approaches on the synthetic MVP dataset in the equivariant setting. On the real-world KITTI dataset, REVNET delivers competitive results compared to non-equivariant networks, without requiring input pose alignment. The source code will be released on GitHub under URL: https://github.com/nizhf/REVNET.
Abstract:Understanding the human-object interactions (HOIs) from a video is essential to fully comprehend a visual scene. This line of research has been addressed by detecting HOIs from images and lately from videos. However, the video-based HOI anticipation task in the third-person view remains understudied. In this paper, we design a framework to detect current HOIs and anticipate future HOIs in videos. We propose to leverage human gaze information since people often fixate on an object before interacting with it. These gaze features together with the scene contexts and the visual appearances of human-object pairs are fused through a spatio-temporal transformer. To evaluate the model in the HOI anticipation task in a multi-person scenario, we propose a set of person-wise multi-label metrics. Our model is trained and validated on the VidHOI dataset, which contains videos capturing daily life and is currently the largest video HOI dataset. Experimental results in the HOI detection task show that our approach improves the baseline by a great margin of 36.3% relatively. Moreover, we conduct an extensive ablation study to demonstrate the effectiveness of our modifications and extensions to the spatio-temporal transformer. Our code is publicly available on https://github.com/nizhf/hoi-prediction-gaze-transformer.