Abstract:Machine-learning (ML) techniques have revolutionized a host of research fields of chemical and materials science with accelerated, high-efficiency discoveries in design, synthesis, manufacturing, characterization and application of novel functional materials, especially at the nanometre scale. The reason is the time efficiency, prediction accuracy and good generalization abilities, which gradually replaces the traditional experimental or computational work. With enormous potentiality to tackle more real-world problems, ML provides a more comprehensive insight into combinations with molecules/materials under the fundamental procedures for constructing ML models, like predicting properties or functionalities from given parameters, nanoarchitecture design and generating specific models for other purposes. The key to the advances in nanomaterials discovery is how input fingerprints and output values can be linked quantitatively. Finally, some great opportunities and technical challenges are concluded in this fantastic field.
Abstract:Urban ride-hailing demand prediction is a crucial but challenging task for intelligent transportation system construction. Predictable ride-hailing demand can facilitate more reasonable vehicle scheduling and online car-hailing platform dispatch. Conventional deep learning methods with no external structured data can be accomplished via hybrid models of CNNs and RNNs by meshing plentiful pixel-level labeled data, but spatial data sparsity and limited learning capabilities on temporal long-term dependencies are still two striking bottlenecks. To address these limitations, we propose a new virtual graph modeling method to focus on significant demand regions and a novel Deep Multi-View Spatiotemporal Virtual Graph Neural Network (DMVST-VGNN) to strengthen learning capabilities of spatial dynamics and temporal long-term dependencies. Specifically, DMVST-VGNN integrates the structures of 1D Convolutional Neural Network, Multi Graph Attention Neural Network and Transformer layer, which correspond to short-term temporal dynamics view, spatial dynamics view and long-term temporal dynamics view respectively. In this paper, experiments are conducted on two large-scale New York City datasets in fine-grained prediction scenes. And the experimental results demonstrate effectiveness and superiority of DMVST-VGNN framework in significant citywide ride-hailing demand prediction.