Abstract:Unsupervised neural machine translation(NMT) is associated with noise and errors in synthetic data when executing vanilla back-translations. Here, we explicitly exploits language model(LM) to drive construction of an unsupervised NMT system. This features two steps. First, we initialize NMT models using synthetic data generated via temporary statistical machine translation(SMT). Second, unlike vanilla back-translation, we formulate a weight function, that scores synthetic data at each step of subsequent iterative training; this allows unsupervised training to an improved outcome. We present the detailed mathematical construction of our method. Experimental WMT2014 English-French, and WMT2016 English-German and English-Russian translation tasks revealed that our method outperforms the best prior systems by more than 3 BLEU points.
Abstract:Neural machine translation (NMT) is one of the best methods for understanding the differences in semantic rules between two languages. Especially for Indo-European languages, subword-level models have achieved impressive results. However, when the translation task involves Chinese, semantic granularity remains at the word and character level, so there is still need more fine-grained translation model of Chinese. In this paper, we introduce a simple and effective method for Chinese translation at the sub-character level. Our approach uses the Wubi method to translate Chinese into English; byte-pair encoding (BPE) is then applied. Our method for Chinese-English translation eliminates the need for a complicated word segmentation algorithm during preprocessing. Furthermore, our method allows for sub-character-level neural translation based on recurrent neural network (RNN) architecture, without preprocessing. The empirical results show that for Chinese-English translation tasks, our sub-character-level model has a comparable BLEU score to the subword model, despite having a much smaller vocabulary. Additionally, the small vocabulary is highly advantageous for NMT model compression.