Abstract:More and more research works fuse the LiDAR and camera information to improve the 3D object detection of the autonomous driving system. Recently, a simple yet effective fusion framework has achieved an excellent detection performance, fusing the LiDAR and camera features in a unified bird's-eye-view (BEV) space. In this paper, we propose a LiDAR-camera fusion framework, named SimpleBEV, for accurate 3D object detection, which follows the BEV-based fusion framework and improves the camera and LiDAR encoders, respectively. Specifically, we perform the camera-based depth estimation using a cascade network and rectify the depth results with the depth information derived from the LiDAR points. Meanwhile, an auxiliary branch that implements the 3D object detection using only the camera-BEV features is introduced to exploit the camera information during the training phase. Besides, we improve the LiDAR feature extractor by fusing the multi-scaled sparse convolutional features. Experimental results demonstrate the effectiveness of our proposed method. Our method achieves 77.6\% NDS accuracy on the nuScenes dataset, showcasing superior performance in the 3D object detection track.
Abstract:Many fields could benefit from the rapid development of the large language models (LLMs). The end-to-end autonomous driving (e2eAD) is one of the typically fields facing new opportunities as the LLMs have supported more and more modalities. Here, by utilizing vision-language model (VLM), we proposed an e2eAD method called SimpleLLM4AD. In our method, the e2eAD task are divided into four stages, which are perception, prediction, planning, and behavior. Each stage consists of several visual question answering (VQA) pairs and VQA pairs interconnect with each other constructing a graph called Graph VQA (GVQA). By reasoning each VQA pair in the GVQA through VLM stage by stage, our method could achieve e2e driving with language. In our method, vision transformers (ViT) models are employed to process nuScenes visual data, while VLM are utilized to interpret and reason about the information extracted from the visual inputs. In the perception stage, the system identifies and classifies objects from the driving environment. The prediction stage involves forecasting the potential movements of these objects. The planning stage utilizes the gathered information to develop a driving strategy, ensuring the safety and efficiency of the autonomous vehicle. Finally, the behavior stage translates the planned actions into executable commands for the vehicle. Our experiments demonstrate that SimpleLLM4AD achieves competitive performance in complex driving scenarios.