Abstract:Language models for American Sign Language (ASL) could make language technologies substantially more accessible to those who sign. To train models on tasks such as isolated sign recognition (ISR) and ASL-to-English translation, datasets provide annotated video examples of ASL signs. To facilitate the generalizability and explainability of these models, we introduce the American Sign Language Knowledge Graph (ASLKG), compiled from twelve sources of expert linguistic knowledge. We use the ASLKG to train neuro-symbolic models for 3 ASL understanding tasks, achieving accuracies of 91% on ISR, 14% for predicting the semantic features of unseen signs, and 36% for classifying the topic of Youtube-ASL videos.
Abstract:Like speech, signs are composed of discrete, recombinable features called phonemes. Prior work shows that models which can recognize phonemes are better at sign recognition, motivating deeper exploration into strategies for modeling sign language phonemes. In this work, we learn graph convolution networks to recognize the sixteen phoneme "types" found in ASL-LEX 2.0. Specifically, we explore how learning strategies like multi-task and curriculum learning can leverage mutually useful information between phoneme types to facilitate better modeling of sign language phonemes. Results on the Sem-Lex Benchmark show that curriculum learning yields an average accuracy of 87% across all phoneme types, outperforming fine-tuning and multi-task strategies for most phoneme types.