Abstract:Large Language Models (LLMs) have shown incredible potential in code generation tasks, and recent research in prompt engineering have enhanced LLMs' understanding of textual information. However, ensuring the accuracy of generated code often requires extensive testing and validation by programmers. While LLMs can typically generate code based on task descriptions, their accuracy remains limited, especially for complex tasks that require a deeper understanding of both the problem statement and the code generation process. This limitation is primarily due to the LLMs' need to simultaneously comprehend text and generate syntactically and semantically correct code, without having the capability to automatically refine the code. In real-world software development, programmers rarely produce flawless code in a single attempt based on the task description alone, they rely on iterative feedback and debugging to refine their programs. Inspired by this process, we introduce a novel architecture of LLM-based agents for code generation and automatic debugging: Refinement and Guidance Debugging (RGD). The RGD framework is a multi-LLM-based agent debugger that leverages three distinct LLM agents-Guide Agent, Debug Agent, and Feedback Agent. RGD decomposes the code generation task into multiple steps, ensuring a clearer workflow and enabling iterative code refinement based on self-reflection and feedback. Experimental results demonstrate that RGD exhibits remarkable code generation capabilities, achieving state-of-the-art performance with a 9.8% improvement on the HumanEval dataset and a 16.2% improvement on the MBPP dataset compared to the state-of-the-art approaches and traditional direct prompting approaches. We highlight the effectiveness of the RGD framework in enhancing LLMs' ability to generate and refine code autonomously.
Abstract:Class Incremental Semantic Segmentation (CISS) aims to mitigate catastrophic forgetting by maintaining a balance between previously learned and newly introduced knowledge. Existing methods, primarily based on regularization techniques like knowledge distillation, help preserve old knowledge but often face challenges in effectively integrating new knowledge, resulting in limited overall improvement. Endpoints Weight Fusion (EWF) method, while simple, effectively addresses some of these limitations by dynamically fusing the model weights from previous steps with those from the current step, using a fusion parameter alpha determined by the relative number of previously known classes and newly introduced classes. However, the simplicity of the alpha calculation may limit its ability to fully capture the complexities of different task scenarios, potentially leading to suboptimal fusion outcomes. In this paper, we propose an enhanced approach called Adaptive Weight Fusion (AWF), which introduces an alternating training strategy for the fusion parameter, allowing for more flexible and adaptive weight integration. AWF achieves superior performance by better balancing the retention of old knowledge with the learning of new classes, significantly improving results on benchmark CISS tasks compared to the original EWF. And our experiment code will be released on Github.