Abstract:Extending deep Q-learning to cooperative multi-agent settings is challenging due to the exponential growth of the joint action space, the non-stationary environment, and the credit assignment problem. Value decomposition allows deep Q-learning to be applied at the joint agent level, at the cost of reduced expressivity. Building on past work in this direction, our paper proposes PairVDN, a novel method for decomposing the value function into a collection of pair-wise, rather than per-agent, functions, improving expressivity at the cost of requiring a more complex (but still efficient) dynamic programming maximisation algorithm. Our method enables the representation of value functions which cannot be expressed as a monotonic combination of per-agent functions, unlike past approaches such as VDN and QMIX. We implement a novel many-agent cooperative environment, Box Jump, and demonstrate improved performance over these baselines in this setting. We open-source our code and environment at https://github.com/zzbuzzard/PairVDN.
Abstract:Computational analysis of whole slide images (WSIs) has seen significant research progress in recent years, with applications ranging across important diagnostic and prognostic tasks such as survival or cancer subtype prediction. Many state-of-the-art models process the entire slide - which may be as large as $150,000 \times 150,000$ pixels - as a bag of many patches, the size of which necessitates computationally cheap feature aggregation methods. However, a large proportion of these patches are uninformative, such as those containing only healthy or adipose tissue, adding significant noise and size to the bag. We propose Pathology Transformer with Hierarchical Selection (PATHS), a novel top-down method for hierarchical weakly supervised representation learning on slide-level tasks in computational pathology. PATHS is inspired by the cross-magnification manner in which a human pathologist examines a slide, recursively filtering patches at each magnification level to a small subset relevant to the diagnosis. Our method overcomes the complications of processing the entire slide, enabling quadratic self-attention and providing a simple interpretable measure of region importance. We apply PATHS to five datasets of The Cancer Genome Atlas (TCGA), and achieve superior performance on slide-level prediction tasks when compared to previous methods, despite processing only a small proportion of the slide.