Abstract:Machine Learning (ML) and Deep Learning (DL) have shown significant promise in healthcare, particularly in medical image segmentation, which is crucial for accurate disease diagnosis and treatment planning. Despite their potential, challenges such as data privacy concerns, limited annotated data, and inadequate training data persist. Decentralized learning approaches such as federated learning (FL), split learning (SL), and split federated learning (SplitFed/SFL) address these issues effectively. This paper introduces "MedSegNet10," a publicly accessible repository designed for medical image segmentation using split-federated learning. MedSegNet10 provides a collection of pre-trained neural network architectures optimized for various medical image types, including microscopic images of human blastocysts, dermatoscopic images of skin lesions, and endoscopic images of lesions, polyps, and ulcers, with applications extending beyond these examples. By leveraging SplitFed's benefits, MedSegNet10 allows collaborative training on privately stored, horizontally split data, ensuring privacy and integrity. This repository supports researchers, practitioners, trainees, and data scientists, aiming to advance medical image segmentation while maintaining patient data privacy. The repository is available at: https://vault.sfu.ca/index.php/s/ryhf6t12O0sobuX (password upon request to the authors).
Abstract:Decentralized machine learning has broadened its scope recently with the invention of Federated Learning (FL), Split Learning (SL), and their hybrids like Split Federated Learning (SplitFed or SFL). The goal of SFL is to reduce the computational power required by each client in FL and parallelize SL while maintaining privacy. This paper investigates the robustness of SFL against packet loss on communication links. The performance of various SFL aggregation strategies is examined by splitting the model at two points -- shallow split and deep split -- and testing whether the split point makes a statistically significant difference to the accuracy of the final model. Experiments are carried out on a segmentation model for human embryo images and indicate the statistically significant advantage of a deeper split point.
Abstract:SplitFed Learning, a combination of Federated and Split Learning (FL and SL), is one of the most recent developments in the decentralized machine learning domain. In SplitFed learning, a model is trained by clients and a server collaboratively. For image segmentation, labels are created at each client independently and, therefore, are subject to clients' bias, inaccuracies, and inconsistencies. In this paper, we propose a data quality-based adaptive averaging strategy for SplitFed learning, called QA-SplitFed, to cope with the variation of annotated ground truth (GT) quality over multiple clients. The proposed method is compared against five state-of-the-art model averaging methods on the task of learning human embryo image segmentation. Our experiments show that all five baseline methods fail to maintain accuracy as the number of corrupted clients increases. QA-SplitFed, however, copes effectively with corruption as long as there is at least one uncorrupted client.