Abstract:Machine learning (ML) potentials typically target a single quantum chemical (QC) level while the ML models developed for multi-fidelity learning have not been shown to provide scalable solutions for foundational models. Here we introduce the all-in-one (AIO) ANI model architecture based on multimodal learning which can learn an arbitrary number of QC levels. Our all-in-one learning approach offers a more general and easier-to-use alternative to transfer learning. We use it to train the AIO-ANI-UIP foundational model with the generalization capability comparable to semi-empirical GFN2-xTB and DFT with a double-zeta basis set for organic molecules. We show that the AIO-ANI model can learn across different QC levels ranging from semi-empirical to density functional theory to coupled cluster. We also use AIO models to design the foundational model {\Delta}-AIO-ANI based on {\Delta}-learning with increased accuracy and robustness compared to AIO-ANI-UIP. The code and the foundational models are available at https://github.com/dralgroup/aio-ani; they will be integrated into the universal and updatable AI-enhanced QM (UAIQM) library and made available in the MLatom package so that they can be used online at the XACS cloud computing platform (see https://github.com/dralgroup/mlatom for updates).
Abstract:Machine learning (ML) is increasingly becoming a common tool in computational chemistry. At the same time, the rapid development of ML methods requires a flexible software framework for designing custom workflows. MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations and to create complex workflows. This open-source package provides plenty of choice to the users who can run simulations with the command line options, input files, or with scripts using MLatom as a Python package, both on their computers and on the online XACS cloud computing at XACScloud.com. Computational chemists can calculate energies and thermochemical properties, optimize geometries, run molecular and quantum dynamics, and simulate (ro)vibrational, one-photon UV/vis absorption, and two-photon absorption spectra with ML, quantum mechanical, and combined models. The users can choose from an extensive library of methods containing pre-trained ML models and quantum mechanical approximations such as AIQM1 approaching coupled-cluster accuracy. The developers can build their own models using various ML algorithms. The great flexibility of MLatom is largely due to the extensive use of the interfaces to many state-of-the-art software packages and libraries.