Abstract:Insulators are crucial insulation components and structural supports in power grids, playing a vital role in the transmission lines. Due to temperature fluctuations, internal stress, or damage from hail, insulators are prone to injury. Automatic detection of damaged insulators faces challenges such as diverse types, small defect targets, and complex backgrounds and shapes. Most research for detecting insulator defects has focused on a single defect type or a specific material. However, the insulators in the grid's transmission lines have different colors and materials. Various insulator defects coexist, and the existing methods have difficulty meeting the practical application requirements. Current methods suffer from low detection accuracy and mAP0.5 cannot meet application requirements. This paper proposes an improved YOLOv7 model for multi-type insulator defect detection. First, our model replaces the SPPCSPC module with the RFB module to enhance the network's feature extraction capability. Second, a CA mechanism is introduced into the head part to enhance the network's feature representation ability and to improve detection accuracy. Third, a WIoU loss function is employed to address the low-quality samples hindering model generalization during training, thereby improving the model's overall performance. The experimental results indicate that the proposed model exhibits enhancements across various performance metrics. Specifically, there is a 1.6% advancement in mAP_0.5, a corresponding 1.6% enhancement in mAP_0.5:0.95, a 1.3% elevation in precision, and a 1% increase in recall. Moreover, the model achieves parameter reduction by 3.2 million, leading to a decrease of 2.5 GFLOPS in computational cost. Notably, there is also an improvement of 2.81 milliseconds in single-image detection speed.
Abstract:The safe operation of high-voltage transmission lines ensures the power grid's security. Various foreign objects attached to the transmission lines, such as balloons, kites and nesting birds, can significantly affect the safe and stable operation of high-voltage transmission lines. With the advancement of computer vision technology, periodic automatic inspection of foreign objects is efficient and necessary. Existing detection methods have low accuracy because foreign objects at-tached to the transmission lines are complex, including occlusions, diverse object types, significant scale variations, and complex backgrounds. In response to the practical needs of the Yunnan Branch of China Southern Power Grid Co., Ltd., this paper proposes an improved YOLOv8m-based model for detecting foreign objects on transmission lines. Experiments are conducted on a dataset collected from Yunnan Power Grid. The proposed model enhances the original YOLOv8m by in-corporating a Global Attention Module (GAM) into the backbone to focus on occluded foreign objects, replacing the SPPF module with the SPPCSPC module to augment the model's multiscale feature extraction capability, and introducing the Focal-EIoU loss function to address the issue of high- and low-quality sample imbalances. These improvements accelerate model convergence and enhance detection accuracy. The experimental results demonstrate that our proposed model achieves a 2.7% increase in mAP_0.5, a 4% increase in mAP_0.5:0.95, and a 6% increase in recall.