Abstract:Group decision-making (GDM) characterized by complexity and uncertainty is an essential part of various life scenarios. Most existing researches lack tools to fuse information quickly and interpret decision results for partially formed decisions. This limitation is particularly noticeable when there is a need to improve the efficiency of GDM. To address this issue, a novel multi-level sequential three-way decision for group decision-making (S3W-GDM) method is constructed from the perspective of granular computing. This method simultaneously considers the vagueness, hesitation, and variation of GDM problems under double hierarchy hesitant fuzzy linguistic term sets (DHHFLTS) environment. First, for fusing information efficiently, a novel multi-level expert information fusion method is proposed, and the concepts of expert decision table and the extraction/aggregation of decision-leveled information based on the multi-level granularity are defined. Second, the neighborhood theory, outranking relation and regret theory (RT) are utilized to redesign the calculations of conditional probability and relative loss function. Then, the granular structure of DHHFLTS based on the sequential three-way decision (S3WD) is defined to improve the decision-making efficiency, and the decision-making strategy and interpretation of each decision-level are proposed. Furthermore, the algorithm of S3W-GDM is given. Finally, an illustrative example of diagnosis is presented, and the comparative and sensitivity analysis with other methods are performed to verify the efficiency and rationality of the proposed method.
Abstract:We present a robust markerless image based visual servoing method that enables precision robot control without hand-eye and camera calibrations in 1, 3, and 5 degrees-of-freedom. The system uses two cameras for observing the workspace and a combination of classical image processing algorithms and deep learning based methods to detect features on camera images. The only restriction on the placement of the two cameras is that relevant image features must be visible in both views. The system enables precise robot-tool to workspace interactions even when the physical setup is disturbed, for example if cameras are moved or the workspace shifts during manipulation. The usefulness of the visual servoing method is demonstrated and evaluated in two applications: in the calibration of a micro-robotic system that dissects mosquitoes for the automated production of a malaria vaccine, and a macro-scale manipulation system for fastening screws using a UR10 robot. Evaluation results indicate that our image based visual servoing method achieves human-like manipulation accuracy in challenging setups even without camera calibration.