Abstract:Articulated objects (e.g., doors and drawers) exist everywhere in our life. Different from rigid objects, articulated objects have higher degrees of freedom and are rich in geometries, semantics, and part functions. Modeling different kinds of parts and articulations with nerual networks plays an essential role in articulated object understanding and manipulation, and will further benefit 3D vision and robotics communities. To model articulated objects, most previous works directly encode articulated objects into feature representations, without specific designs for parts, articulations and part motions. In this paper, we introduce a novel framework that explicitly disentangles the part motion of articulated objects by predicting the transformation matrix of points on the part surface, using spatially continuous neural implicit representations to model the part motion smoothly in the space. More importantly, while many methods could only model a certain kind of joint motion (such as the revolution in the clockwise order), our proposed framework is generic to different kinds of joint motions in that transformation matrix can model diverse kinds of joint motions in the space. Quantitative and qualitative results of experiments over diverse categories of articulated objects demonstrate the effectiveness of our proposed framework.
Abstract:Shape assembly aims to reassemble parts (or fragments) into a complete object, which is a common task in our daily life. Different from the semantic part assembly (e.g., assembling a chair's semantic parts like legs into a whole chair), geometric part assembly (e.g., assembling bowl fragments into a complete bowl) is an emerging task in computer vision and robotics. Instead of semantic information, this task focuses on geometric information of parts. As the both geometric and pose space of fractured parts are exceptionally large, shape pose disentanglement of part representations is beneficial to geometric shape assembly. In our paper, we propose to leverage SE(3) equivariance for such shape pose disentanglement. Moreover, while previous works in vision and robotics only consider SE(3) equivariance for the representations of single objects, we move a step forward and propose leveraging SE(3) equivariance for representations considering multi-part correlations, which further boosts the performance of the multi-part assembly. Experiments demonstrate the significance of SE(3) equivariance and our proposed method for geometric shape assembly. Project page: https://crtie.github.io/SE-3-part-assembly/