Abstract:Urban renewal and transformation processes necessitate the preservation of the historical urban fabric, particularly in districts known for their architectural and historical significance. These regions, with their diverse architectural styles, have traditionally required extensive preliminary research, often leading to subjective results. However, the advent of machine learning models has opened up new avenues for generating building facade images. Despite this, creating high-quality images for historical district renovations remains challenging, due to the complexity and diversity inherent in such districts. In response to these challenges, our study introduces a new methodology for automatically generating images of historical arcade facades, utilizing Stable Diffusion models conditioned on textual descriptions. By classifying and tagging a variety of arcade styles, we have constructed several realistic arcade facade image datasets. We trained multiple low-rank adaptation (LoRA) models to control the stylistic aspects of the generated images, supplemented by ControlNet models for improved precision and authenticity. Our approach has demonstrated high levels of precision, authenticity, and diversity in the generated images, showing promising potential for real-world urban renewal projects. This new methodology offers a more efficient and accurate alternative to conventional design processes in urban renewal, bypassing issues of unconvincing image details, lack of precision, and limited stylistic variety. Future research could focus on integrating this two-dimensional image generation with three-dimensional modeling techniques, providing a more comprehensive solution for renovating architectural facades in historical districts.
Abstract:Facade parsing stands as a pivotal computer vision task with far-reaching applications in areas like architecture, urban planning, and energy efficiency. Despite the recent success of deep learning-based methods in yielding impressive results on certain open-source datasets, their viability for real-world applications remains uncertain. Real-world scenarios are considerably more intricate, demanding greater computational efficiency. Existing datasets often fall short in representing these settings, and previous methods frequently rely on extra models to enhance accuracy, which requires much computation cost. In this paper, we introduce Comprehensive Facade Parsing (CFP), a dataset meticulously designed to encompass the intricacies of real-world facade parsing tasks. Comprising a total of 602 high-resolution street-view images, this dataset captures a diverse array of challenging scenarios, including sloping angles and densely clustered buildings, with painstakingly curated annotations for each image. We introduce a new pipeline known as Revision-based Transformer Facade Parsing (RTFP). This marks the pioneering utilization of Vision Transformers (ViT) in facade parsing, and our experimental results definitively substantiate its merit. We also design Line Acquisition, Filtering, and Revision (LAFR), an efficient yet accurate revision algorithm that can improve the segment result solely from simple line detection using prior knowledge of the facade. In ECP 2011, RueMonge 2014, and our CFP, we evaluate the superiority of our method.