Abstract:Automated infection measurement and COVID-19 diagnosis based on Chest X-ray (CXR) imaging is important for faster examination. We propose a novel approach, called DRR4Covid, to learn automated COVID-19 diagnosis and infection segmentation on CXRs from digitally reconstructed radiographs (DRRs). DRR4Covid comprises of an infection-aware DRR generator, a classification and/or segmentation network, and a domain adaptation module. The infection-aware DRR generator is able to produce DRRs with adjustable strength of radiological signs of COVID-19 infection, and generate pixel-level infection annotations that match the DRRs precisely. The domain adaptation module is introduced to reduce the domain discrepancy between DRRs and CXRs by training networks on unlabeled real CXRs and labeled DRRs together.We provide a simple but effective implementation of DRR4Covid by using a domain adaptation module based on Maximum Mean Discrepancy (MMD), and a FCN-based network with a classification header and a segmentation header. Extensive experiment results have confirmed the efficacy of our method; specifically, quantifying the performance by accuracy, AUC and F1-score, our network without using any annotations from CXRs has achieved a classification score of (0.954, 0.989, 0.953) and a segmentation score of (0.957, 0.981, 0.956) on a test set with 794 normal cases and 794 positive cases. Besides, we estimate the sensitive of X-ray images in detecting COVID-19 infection by adjusting the strength of radiological signs of COVID-19 infection in synthetic DRRs. The estimated detection limit of the proportion of infected voxels in the lungs is 19.43%, and the estimated lower bound of the contribution rate of infected voxels is 20.0% for significant radiological signs of COVID-19 infection. Our codes will be made publicly available at https://github.com/PengyiZhang/DRR4Covid.
Abstract:The success of deep learning has been witnessed as a promising technique for computer-aided biomedical image analysis, due to end-to-end learning framework and availability of large-scale labelled samples. However, in many cases of biomedical image analysis, deep learning techniques suffer from the small sample learning (SSL) dilemma caused mainly by lack of annotations. To be more practical for biomedical image analysis, in this paper we survey the key SSL techniques that help relieve the suffering of deep learning by combining with the development of related techniques in computer vision applications. In order to accelerate the clinical usage of biomedical image analysis based on deep learning techniques, we intentionally expand this survey to include the explanation methods for deep models that are important to clinical decision making. We survey the key SSL techniques by dividing them into five categories: (1) explanation techniques, (2) weakly supervised learning techniques, (3) transfer learning techniques, (4) active learning techniques, and (5) miscellaneous techniques involving data augmentation, domain knowledge, traditional shallow methods and attention mechanism. These key techniques are expected to effectively support the application of deep learning in clinical biomedical image analysis, and furtherly improve the analysis performance, especially when large-scale annotated samples are not available. We bulid demos at https://github.com/PengyiZhang/MIADeepSSL.