Abstract:In recent years, there has been an increasing demand for customizable 3D virtual spaces. Due to the significant human effort required to create these virtual spaces, there is a need for efficiency in virtual space creation. While existing studies have proposed methods for automatically generating layouts such as floor plans and furniture arrangements, these methods only generate text indicating the layout structure based on user instructions, without utilizing the information obtained during the generation process. In this study, we propose an agent-driven layout generation system using the GPT-4V multimodal large language model and validate its effectiveness. Specifically, the language model manipulates agents to sequentially place objects in the virtual space, thus generating layouts that reflect user instructions. Experimental results confirm that our proposed method can generate virtual spaces reflecting user instructions with a high success rate. Additionally, we successfully identified elements contributing to the improvement in behavior generation performance through ablation study.
Abstract:The text retrieval is the task of retrieving similar documents to a search query, and it is important to improve retrieval accuracy while maintaining a certain level of retrieval speed. Existing studies have reported accuracy improvements using language models, but many of these do not take into account the reduction in search speed that comes with increased performance. In this study, we propose three-stage re-ranking model using model ensembles or larger language models to improve search accuracy while minimizing the search delay. We ranked the documents by BM25 and language models, and then re-ranks by a model ensemble or a larger language model for documents with high similarity to the query. In our experiments, we train the MiniLM language model on the MS-MARCO dataset and evaluate it in a zero-shot setting. Our proposed method achieves higher retrieval accuracy while reducing the retrieval speed decay.
Abstract:One of the challenges in text generation is to control generation as intended by a user. Previous studies have proposed to specify the keywords that should be included in the generated text. However, this is insufficient to generate text which reflect the user intent. For example, placing the important keyword beginning of the text would helps attract the reader's attention, but existing methods do not enable such flexible control. In this paper, we tackle a novel task of controlling not only keywords but also the position of each keyword in the text generation. To this end, we show that a method using special tokens can control the relative position of keywords. Experimental results on summarization and story generation tasks show that the proposed method can control keywords and their positions. We also demonstrate that controlling the keyword positions can generate summary texts that are closer to the user's intent than baseline. We release our code.