Abstract:With the growing demand for higher wireless data rates, the interest in extending the carrier frequency of wireless links to the terahertz (THz) range has significantly increased. For long-distance outdoor wireless communications, THz channels may suffer substantial power loss and security issues due to atmospheric weather effects. It is crucial to assess the impact of weather on high-capacity data transmission to evaluate wireless system link budgets and performance accurately. In this article, we provide an insight into the propagation characteristics of THz channels under atmospheric conditions and the security aspects of THz communication systems in future applications. We conduct a comprehensive survey of our recent research and experimental findings on THz channel transmission and physical layer security, synthesizing and categorizing the state-of-the-art research in this domain. Our analysis encompasses various atmospheric phenomena, including molecular absorption, scattering effects, and turbulence, elucidating their intricate interactions with THz waves and the resultant implications for channel modeling and system design. Furthermore, we investigate the unique security challenges posed by THz communications, examining potential vulnerabilities and proposing novel countermeasures to enhance the resilience of these high-frequency systems against eavesdropping and other security threats. Finally, we discuss the challenges and limitations of such high-frequency wireless communications and provide insights into future research prospects for realizing the 6G vision, emphasizing the need for innovative solutions to overcome the atmospheric hurdles and security concerns in THz communications.
Abstract:Text generation in image-based platforms, particularly for music-related content, requires precise control over text styles and the incorporation of emotional expression. However, existing approaches often need help to control the proportion of external factors in generated text and rely on discrete inputs, lacking continuous control conditions for desired text generation. This study proposes Continuous Parameterization for Controlled Text Generation (CPCTG) to overcome these limitations. Our approach leverages a Language Model (LM) as a style learner, integrating Semantic Cohesion (SC) and Emotional Expression Proportion (EEP) considerations. By enhancing the reward method and manipulating the CPCTG level, our experiments on playlist description and music topic generation tasks demonstrate significant improvements in ROUGE scores, indicating enhanced relevance and coherence in the generated text.