Abstract:Unsupervised anomaly detection using only normal samples is of great significance for quality inspection in industrial manufacturing. Although existing reconstruction-based methods have achieved promising results, they still face two problems: poor distinguishable information in image reconstruction and well abnormal regeneration caused by model over-generalization ability. To overcome the above issues, we convert the image reconstruction into a combination of parallel feature restorations and propose a multi-feature reconstruction network, MFRNet, using crossed-mask restoration in this paper. Specifically, a multi-scale feature aggregator is first developed to generate more discriminative hierarchical representations of the input images from a pre-trained model. Subsequently, a crossed-mask generator is adopted to randomly cover the extracted feature map, followed by a restoration network based on the transformer structure for high-quality repair of the missing regions. Finally, a hybrid loss is equipped to guide model training and anomaly estimation, which gives consideration to both the pixel and structural similarity. Extensive experiments show that our method is highly competitive with or significantly outperforms other state-of-the-arts on four public available datasets and one self-made dataset.
Abstract:With the identity information in face data more closely related to personal credit and property security, people pay increasing attention to the protection of face data privacy. In different tasks, people have various requirements for face de-identification (De-ID), so we propose a systematical solution compatible for these De-ID operations. Firstly, an attribute disentanglement and generative network is constructed to encode two parts of the face, which are the identity (facial features like mouth, nose and eyes) and expression (including expression, pose and illumination). Through face swapping, we can remove the original ID completely. Secondly, we add an adversarial vector mapping network to perturb the latent code of the face image, different from previous traditional adversarial methods. Through this, we can construct unrestricted adversarial image to decrease ID similarity recognized by model. Our method can flexibly de-identify the face data in various ways and the processed images have high image quality.