Abstract:Intelligent reflecting surface (IRS) and movable antenna (MA) technologies have been proposed to enhance wireless communications by creating favorable channel conditions. This paper investigates the joint beamforming and antenna position design for an MA-enabled IRS (MA-IRS)-aided multi-user multiple-input single-output (MU-MISO) communication system, where the MA-IRS is deployed to aid the communication between the MA-enabled base station (BS) and user equipment (UE). In contrast to conventional fixed position antenna (FPA)-enabled IRS (FPA-IRS), the MA-IRS enhances the wireless channel by controlling the positions of the reflecting elements. To verify the system's effectiveness and optimize its performance, we formulate a sum-rate maximization problem with a minimum rate threshold constraint for the MU-MISO communication. To tackle the non-convex problem, a product Riemannian manifold optimization (PRMO) method is proposed for the joint design of the beamforming and MA positions. Specifically, a product Riemannian manifold space (PRMS) is constructed and the corresponding Riemannian gradient is derived for updating the variables, and the Riemannian exact penalty (REP) method and a Riemannian Broyden-Fletcher-Goldfarb-Shanno (RBFGS) algorithm is derived to obtain a feasible solution over the PRMS. Simulation results demonstrate that compared with the conventional FPA-IRS-aided MU-MISO communication, the reflecting elements of the MA-IRS can move to the positions with higher channel gain, thus enhancing the system performance. Furthermore, it is shown that integrating MA with IRS leads to higher performance gains compared to integrating MA with BS.
Abstract:Some deep convolutional neural networks were proposed for time-series classification and class imbalanced problems. However, those models performed degraded and even failed to recognize the minority class of an imbalanced temporal sequences dataset. Minority samples would bring troubles for temporal deep learning classifiers due to the equal treatments of majority and minority class. Until recently, there were few works applying deep learning on imbalanced time-series classification (ITSC) tasks. Here, this paper aimed at tackling ITSC problems with deep learning. An adaptive cost-sensitive learning strategy was proposed to modify temporal deep learning models. Through the proposed strategy, classifiers could automatically assign misclassification penalties to each class. In the experimental section, the proposed method was utilized to modify five neural networks. They were evaluated on a large volume, real-life and imbalanced time-series dataset with six metrics. Each single network was also tested alone and combined with several mainstream data samplers. Experimental results illustrated that the proposed cost-sensitive modified networks worked well on ITSC tasks. Compared to other methods, the cost-sensitive convolution neural network and residual network won out in the terms of all metrics. Consequently, the proposed cost-sensitive learning strategy can be used to modify deep learning classifiers from cost-insensitive to cost-sensitive. Those cost-sensitive convolutional networks can be effectively applied to address ITSC issues.