Abstract:As Large Language Models (LLMs) become an important way of information seeking, there have been increasing concerns about the unethical content LLMs may generate. In this paper, we conduct a rigorous evaluation of LLMs' implicit bias towards certain groups by attacking them with carefully crafted instructions to elicit biased responses. Our attack methodology is inspired by psychometric principles in cognitive and social psychology. We propose three attack approaches, i.e., Disguise, Deception, and Teaching, based on which we built evaluation datasets for four common bias types. Each prompt attack has bilingual versions. Extensive evaluation of representative LLMs shows that 1) all three attack methods work effectively, especially the Deception attacks; 2) GLM-3 performs the best in defending our attacks, compared to GPT-3.5 and GPT-4; 3) LLMs could output content of other bias types when being taught with one type of bias. Our methodology provides a rigorous and effective way of evaluating LLMs' implicit bias and will benefit the assessments of LLMs' potential ethical risks.
Abstract:In the machine learning domain, active learning is an iterative data selection algorithm for maximizing information acquisition and improving model performance with limited training samples. It is very useful, especially for the industrial applications where training samples are expensive, time-consuming, or difficult to obtain. Existing methods mainly focus on active learning for classification, and a few methods are designed for regression such as linear regression or Gaussian process. Uncertainties from measurement errors and intrinsic input noise inevitably exist in the experimental data, which further affects the modeling performance. The existing active learning methods do not incorporate these uncertainties for Gaussian process. In this paper, we propose two new active learning algorithms for the Gaussian process with uncertainties, which are variance-based weighted active learning algorithm and D-optimal weighted active learning algorithm. Through numerical study, we show that the proposed approach can incorporate the impact from uncertainties, and realize better prediction performance. This approach has been applied to improving the predictive modeling for automatic shape control of composite fuselage.