Abstract:The petroleum industry is crucial for modern society, but the production process is complex and risky. During the production, accidents or failures, resulting from undesired production events, can cause severe environmental and economic damage. Previous studies have investigated machine learning (ML) methods for undesired event detection. However, the prediction of event probability in real-time was insufficiently addressed, which is essential since it is important to undertake early intervention when an event is expected to happen. This paper proposes two ML approaches, random forests and temporal convolutional networks, to detect undesired events in real-time. Results show that our approaches can effectively classify event types and predict the probability of their appearance, addressing the challenges uncovered in previous studies and providing a more effective solution for failure event management during the production.
Abstract:Geological modeling currently uses various computer-based applications. Data harmonization at the semantic level by means of ontologies is essential for making these applications interoperable. Since geo-modeling is currently part of multidisciplinary projects, semantic harmonization is required to model not only geological knowledge but also to integrate other domain knowledge at a general level. For this reason, the domain ontologies used for describing geological knowledge must be based on a sound ontology background to ensure the described geological knowledge is integratable. This paper presents a domain ontology: GeoFault, resting on the Basic Formal Ontology BFO (Arp et al., 2015) and the GeoCore ontology (Garcia et al., 2020). It models the knowledge related to geological faults. Faults are essential to various industries but are complex to model. They can be described as thin deformed rock volumes or as spatial arrangements resulting from the different displacements of geological blocks. At a broader scale, faults are currently described as mere surfaces, which are the components of complex fault arrays. The reference to the BFO and GeoCore package allows assigning these various fault elements to define ontology classes and their logical linkage within a consistent ontology framework. The GeoFault ontology covers the core knowledge of faults 'strico sensu,' excluding ductile shear deformations. This considered vocabulary is essentially descriptive and related to regional to outcrop scales, excluding microscopic, orogenic, and tectonic plate structures. The ontology is molded in OWL 2, validated by competency questions with two use cases, and tested using an in-house ontology-driven data entry application. The work of GeoFault provides a solid framework for disambiguating fault knowledge and a foundation of fault data integration for the applications and the users.