Abstract:Open Set Video Anomaly Detection (OpenVAD) aims to identify abnormal events from video data where both known anomalies and novel ones exist in testing. Unsupervised models learned solely from normal videos are applicable to any testing anomalies but suffer from a high false positive rate. In contrast, weakly supervised methods are effective in detecting known anomalies but could fail in an open world. We develop a novel weakly supervised method for the OpenVAD problem by integrating evidential deep learning (EDL) and normalizing flows (NFs) into a multiple instance learning (MIL) framework. Specifically, we propose to use graph neural networks and triplet loss to learn discriminative features for training the EDL classifier, where the EDL is capable of identifying the unknown anomalies by quantifying the uncertainty. Moreover, we develop an uncertainty-aware selection strategy to obtain clean anomaly instances and a NFs module to generate the pseudo anomalies. Our method is superior to existing approaches by inheriting the advantages of both the unsupervised NFs and the weakly-supervised MIL framework. Experimental results on multiple real-world video datasets show the effectiveness of our method.
Abstract:We propose a novel framework to classify large-scale time series data with long duration. Long time seriesclassification (L-TSC) is a challenging problem because the dataoften contains a large amount of irrelevant information to theclassification target. The irrelevant period degrades the classifica-tion performance while the relevance is unknown to the system.This paper proposes an uncertainty-aware multiple instancelearning (MIL) framework to identify the most relevant periodautomatically. The predictive uncertainty enables designing anattention mechanism that forces the MIL model to learn from thepossibly discriminant period. Moreover, the predicted uncertaintyyields a principled estimator to identify whether a prediction istrustworthy or not. We further incorporate another modality toaccommodate unreliable predictions by training a separate modelbased on its availability and conduct uncertainty aware fusion toproduce the final prediction. Systematic evaluation is conductedon the Automatic Identification System (AIS) data, which is col-lected to identify and track real-world vessels. Empirical resultsdemonstrate that the proposed method can effectively detect thetypes of vessels based on the trajectory and the uncertainty-awarefusion with other available data modality (Synthetic-ApertureRadar or SAR imagery is used in our experiments) can furtherimprove the detection accuracy.