University of Oxford
Abstract:Training reinforcement learning (RL) agents using scalar reward signals is often infeasible when an environment has sparse and non-Markovian rewards. Moreover, handcrafting these reward functions before training is prone to misspecification, especially when the environment's dynamics are only partially known. This paper proposes a novel pipeline for learning non-Markovian task specifications as succinct finite-state `task automata' from episodes of agent experience within unknown environments. We leverage two key algorithmic insights. First, we learn a product MDP, a model composed of the specification's automaton and the environment's MDP (both initially unknown), by treating it as a partially observable MDP and using off-the-shelf algorithms for hidden Markov models. Second, we propose a novel method for distilling the task automaton (assumed to be a deterministic finite automaton) from the learnt product MDP. Our learnt task automaton enables the decomposition of a task into its constituent sub-tasks, which improves the rate at which an RL agent can later synthesise an optimal policy. It also provides an interpretable encoding of high-level environmental and task features, so a human can readily verify that the agent has learnt coherent tasks with no misspecifications. In addition, we take steps towards ensuring that the learnt automaton is environment-agnostic, making it well-suited for use in transfer learning. Finally, we provide experimental results to illustrate our algorithm's performance in different environments and tasks and its ability to incorporate prior domain knowledge to facilitate more efficient learning.