Abstract:Rapid advances in Machine Learning (ML) have triggered new trends in Autonomous Vehicles (AVs). ML algorithms play a crucial role in interpreting sensor data, predicting potential hazards, and optimizing navigation strategies. However, achieving full autonomy in cluttered and complex situations, such as intricate intersections, diverse sceneries, varied trajectories, and complex missions, is still challenging, and the cost of data labeling remains a significant bottleneck. The adaptability and robustness of humans in complex scenarios motivate the inclusion of humans in ML process, leveraging their creativity, ethical power, and emotional intelligence to improve ML effectiveness. The scientific community knows this approach as Human-In-The-Loop Machine Learning (HITL-ML). Towards safe and ethical autonomy, we present a review of HITL-ML for AVs, focusing on Curriculum Learning (CL), Human-In-The-Loop Reinforcement Learning (HITL-RL), Active Learning (AL), and ethical principles. In CL, human experts systematically train ML models by starting with simple tasks and gradually progressing to more difficult ones. HITL-RL significantly enhances the RL process by incorporating human input through techniques like reward shaping, action injection, and interactive learning. AL streamlines the annotation process by targeting specific instances that need to be labeled with human oversight, reducing the overall time and cost associated with training. Ethical principles must be embedded in AVs to align their behavior with societal values and norms. In addition, we provide insights and specify future research directions.
Abstract:Unmanned Aerial Vehicles (UAVs) provide agile and safe solutions to communication relay networks, offering improved throughput. However, their modeling and control present challenges, and real-world deployment is hindered by the gap between simulation and reality. Moreover, enhancing situational awareness is critical. Several works in the literature proposed integrating UAV operation with immersive digital technologies, such as Digital Twin (DT) and Extended Reality (XR), to address these challenges. This paper provides a comprehensive overview of current research and developments involving immersive digital technologies for UAVs, including the latest advancements and emerging trends. We also explore the integration of DT and XR with Artificial Intelligence (AI) algorithms to create more intelligent, adaptive, and responsive UAV systems. Finally, we provide discussions, identify gaps in current research, and suggest future directions for studying the application of immersive technologies in UAVs, fostering further innovation and development in this field. We envision the fusion of DTs with XR will transform how UAVs operate, offering tools that enhance visualization, improve decision-making, and enable effective collaboration.
Abstract:Unmanned aerial vehicle (UAV)-assisted sensor networks (UASNets), which play a crucial role in creating new opportunities, are experiencing significant growth in civil applications worldwide. UASNets improve disaster management through timely surveillance and advance precision agriculture with detailed crop monitoring, thereby significantly transforming the commercial economy. UASNets revolutionize the commercial sector by offering greater efficiency, safety, and cost-effectiveness, highlighting their transformative impact. A fundamental aspect of these new capabilities and changes is the collection of data from rugged and remote areas. Due to their excellent mobility and maneuverability, UAVs are employed to collect data from ground sensors in harsh environments, such as natural disaster monitoring, border surveillance, and emergency response monitoring. One major challenge in these scenarios is that the movements of UAVs affect channel conditions and result in packet loss. Fast movements of UAVs lead to poor channel conditions and rapid signal degradation, resulting in packet loss. On the other hand, slow mobility of a UAV can cause buffer overflows of the ground sensors, as newly arrived data is not promptly collected by the UAV. Our proposal to address this challenge is to minimize packet loss by jointly optimizing the velocity controls and data collection schedules of multiple UAVs.Furthermore, in UASNets, swift movements of UAVs result in poor channel conditions and fast signal attenuation, leading to an extended age of information (AoI). In contrast, slow movements of UAVs prolong flight time, thereby extending the AoI of ground sensors.To address this challenge, we propose a new mean-field flight resource allocation optimization to minimize the AoI of sensory data.