Abstract:Following language instructions to navigate in unseen environments is a challenging task for autonomous embodied agents. With strong representation capabilities, pretrained vision-and-language models are widely used in VLN. However, most of them are trained on web-crawled general-purpose datasets, which incurs a considerable domain gap when used for VLN tasks. To address the problem, we propose a novel and model-agnostic domain-aware prompt learning (DAP) framework. For equipping the pretrained models with specific object-level and scene-level cross-modal alignment in VLN tasks, DAP applies a low-cost prompt tuning paradigm to learn soft visual prompts for extracting in-domain image semantics. Specifically, we first generate a set of in-domain image-text pairs with the help of the CLIP model. Then we introduce soft visual prompts in the input space of the visual encoder in a pretrained model. DAP injects in-domain visual knowledge into the visual encoder of the pretrained model in an efficient way. Experimental results on both R2R and REVERIE show the superiority of DAP compared to existing state-of-the-art methods.
Abstract:With strong representation capabilities, pretrained vision-language models are widely used in vision and language navigation (VLN). However, most of them are trained on web-crawled general-purpose datasets, which incurs a considerable domain gap when used for VLN tasks. Another challenge for VLN is how the agent understands the contextual relations between actions on a trajectory and performs cross-modal alignment sequentially. In this paper, we propose a novel Prompt-bAsed coNtext- and Domain-Aware (PANDA) pretraining framework to address these problems. It performs prompting in two stages. In the domain-aware stage, we apply a low-cost prompt tuning paradigm to learn soft visual prompts from an in-domain dataset for equipping the pretrained models with object-level and scene-level cross-modal alignment in VLN tasks. Furthermore, in the context-aware stage, we design a set of hard context prompts to capture the sequence-level semantics and instill both out-of-context and contextual knowledge in the instruction into cross-modal representations. They enable further tuning of the pretrained models via contrastive learning. Experimental results on both R2R and REVERIE show the superiority of PANDA compared to previous state-of-the-art methods.