Abstract:Global data assimilation enables weather forecasting at all scales and provides valuable data for studying the Earth system. However, the computational demands of physics-based algorithms used in operational systems limits the volume and diversity of observations that are assimilated. Here, we present "EarthNet", a multi-modal foundation model for data assimilation that learns to predict a global gap-filled atmospheric state solely from satellite observations. EarthNet is trained as a masked autoencoder that ingests a 12 hour sequence of observations and learns to fill missing data from other sensors. We show that EarthNet performs a form of data assimilation producing a global 0.16 degree reanalysis dataset of 3D atmospheric temperature and humidity at a fraction of the time compared to operational systems. It is shown that the resulting reanalysis dataset reproduces climatology by evaluating a 1 hour forecast background state against observations. We also show that our 3D humidity predictions outperform MERRA-2 and ERA5 reanalyses by 10% to 60% between the middle troposphere and lower stratosphere (5 to 20 km altitude) and our 3D temperature and humidity are statistically equivalent to the Microwave integrated Retrieval System (MiRS) observations at nearly every level of the atmosphere. Our results indicate significant promise in using EarthNet for high-frequency data assimilation and global weather forecasting.
Abstract:Deep learning has the potential to automate echocardiogram analysis for early detection of heart disease. Based on a qualitative analysis of design concerns, this study suggests that predicting normal heart function instead of disease accounts for data quality bias and significantly increases efficiency in cardiologists' workflows.
Abstract:Semantic segmentation of land cover classes is fundamental for agricultural and economic development work, from sustainable forestry to urban planning, yet existing training datasets have significant limitations. To generate an open and comprehensive training library of high resolution Earth imagery and high quality land cover classifications, public Sentinel-2 data at 10 m spatial resolution was matched with accurate GlobeLand30 labels from 2010, which were filtered by agreement with an intermediary Sentinel-2 classification at 20 m produced during atmospheric correction. Scene-level classifications were predicted by Random Forests trained on valid reflectance data and the filtered labels, and achieved over 80% model accuracy for a variety of locations. Further work is required to aggregate individual scene classifications for annual labels and to test the approach in more locations, before crowdsourcing human validation. The goal is to create a sustained community-wide effort to generate image labels not only for land cover, but also very specific images for major agriculture crops across the world and other thematic categories of interest to the global development community.