Abstract:Point-to-point and periodic motions are ubiquitous in the world of robotics. To master these motions, Autonomous Dynamic System (DS) based algorithms are fundamental in the domain of Learning from Demonstration (LfD). However, these algorithms face the significant challenge of balancing precision in learning with the maintenance of system stability. This paper addresses this challenge by presenting a novel ADS algorithm that leverages neural network technology. The proposed algorithm is designed to distill essential knowledge from demonstration data, ensuring stability during the learning of both point-to-point and periodic motions. For point-to-point motions, a neural Lyapunov function is proposed to align with the provided demonstrations. In the case of periodic motions, the neural Lyapunov function is used with the transversal contraction to ensure that all generated motions converge to a stable limit cycle. The model utilizes a streamlined neural network architecture, adept at achieving dual objectives: optimizing learning accuracy while maintaining global stability. To thoroughly assess the efficacy of the proposed algorithm, rigorous evaluations are conducted using the LASA dataset and a manually designed dataset. These assessments were complemented by empirical validation through robotic experiments, providing robust evidence of the algorithm's performance
Abstract:Autonomous Dynamic System (DS)-based algorithms hold a pivotal and foundational role in the field of Learning from Demonstration (LfD). Nevertheless, they confront the formidable challenge of striking a delicate balance between achieving precision in learning and ensuring the overall stability of the system. In response to this substantial challenge, this paper introduces a novel DS algorithm rooted in neural network technology. This algorithm not only possesses the capability to extract critical insights from demonstration data but also demonstrates the capacity to learn a candidate Lyapunov energy function that is consistent with the provided data. The model presented in this paper employs a straightforward neural network architecture that excels in fulfilling a dual objective: optimizing accuracy while simultaneously preserving global stability. To comprehensively evaluate the effectiveness of the proposed algorithm, rigorous assessments are conducted using the LASA dataset, further reinforced by empirical validation through a robotic experiment.