Abstract:The next sixth generation (6G) networks are envisioned to integrate sensing and communications in a single system, thus greatly improving spectrum utilization and reducing hardware costs. Low earth orbit (LEO) satellite communications combined with massive multiple-input multiple-output (MIMO) technology holds significant promise in offering ubiquitous and seamless connectivity with high data rates. Existing integrated sensing and communications (ISAC) studies mainly focus on terrestrial systems, while operating ISAC in massive MIMO LEO satellite systems is promising to provide high-capacity communication and flexible sensing ubiquitously. In this paper, we first give an overview of LEO satellite systems and ISAC and consider adopting ISAC in the massive MIMO LEO satellite systems. Then, the recent research advances are presented. A discussion on related challenges and key enabling technologies follows. Finally, we point out some open issues and promising research directions.
Abstract:Integrated communications and localization (ICAL) will play an important part in future sixth generation (6G) networks for the realization of Internet of Everything (IoE) to support both global communications and seamless localization. Massive multiple-input multiple-output (MIMO) low earth orbit (LEO) satellite systems have great potential in providing wide coverage with enhanced gains, and thus are strong candidates for realizing ubiquitous ICAL. In this paper, we develop a wideband massive MIMO LEO satellite system to simultaneously support wireless communications and localization operations in the downlink. In particular, we first characterize the signal propagation properties and derive a localization performance bound. Based on these analyses, we focus on the hybrid analog/digital precoding design to achieve high communication capability and localization precision. Numerical results demonstrate that the proposed ICAL scheme supports both the wireless communication and localization operations for typical system setups.