Abstract:Graph mining is an important area in data mining and machine learning that involves extracting valuable information from graph-structured data. In recent years, significant progress has been made in this field through the development of graph neural networks (GNNs). However, GNNs are still deficient in generalizing to diverse graph data. Aiming to this issue, Large Language Models (LLMs) could provide new solutions for graph mining tasks with their superior semantic understanding. In this review, we systematically review the combination and application techniques of LLMs and GNNs and present a novel taxonomy for research in this interdisciplinary field, which involves three main categories: GNN-driving-LLM, LLM-driving-GNN, and GNN-LLM-co-driving. Within this framework, we reveal the capabilities of LLMs in enhancing graph feature extraction as well as improving the effectiveness of downstream tasks such as node classification, link prediction, and community detection. Although LLMs have demonstrated their great potential in handling graph-structured data, their high computational requirements and complexity remain challenges. Future research needs to continue to explore how to efficiently fuse LLMs and GNNs to achieve more powerful graph learning and reasoning capabilities and provide new impetus for the development of graph mining techniques.
Abstract:Few-shot learning (FSL) requires a model to classify new samples after learning from only a few samples. While remarkable results are achieved in existing methods, the performance of embedding and metrics determines the upper limit of classification accuracy in FSL. The bottleneck is that deep networks and complex metrics tend to induce overfitting in FSL, making it difficult to further improve the performance. Towards this, we propose plug-and-play model-adaptive resizer (MAR) and adaptive similarity metric (ASM) without any other losses. MAR retains high-resolution details to alleviate the overfitting problem caused by data scarcity, and ASM decouples the relationship between different metrics and then fuses them into an advanced one. Extensive experiments show that the proposed method could boost existing methods on two standard dataset and a fine-grained datasets, and achieve state-of-the-art results on mini-ImageNet and tiered-ImageNet.