Abstract:We demonstrate an all-optical phase regeneration technique based on Kerr soliton combs, which can realize degraded quaternary phase shift keying (QPSK) signal regeneration through phase-sensitive amplification. A Kerr soliton comb is generated at the receiver side of optical communication systems based on a carrier recovery scheme and is used as coherent dual pumps to achieve phase regeneration. Our study will enhance the relay and reception performance of all-optical communication systems.
Abstract:Dissipative Kerr soliton microcomb has been recognized as a promising on-chip multi-wavelength laser source for fiber optical communications, as its comb lines possess frequency and phase stability far beyond independent lasers. In the scenarios of coherent optical transmission and interconnect, a highly beneficial but rarely explored target is to re-generate a Kerr soliton microcomb at the receiver side as local oscillators that conserve the frequency and phase property of the incoming data carriers, so that to enable coherent detection with minimized optical and electrical compensations. Here, by using the techniques of pump laser conveying and two-point locking, we implement re-generation of a Kerr soliton microcomb that faithfully clones the frequency and phase coherence of another microcomb sent from 50 km away. Moreover, leveraging the coherence-cloned soliton microcombs as carriers and local oscillators, we demonstrate terabit coherent data interconnect, wherein traditional digital processes for frequency offset estimation is totally dispensed with, and carrier phase estimation is substantially simplified via slowed-down phase estimation rate per channel and joint phase estimation among multiple channels. Our work reveals that, in addition to providing a multitude of laser tones, regulating the frequency and phase of Kerr soliton microcombs among transmitters and receivers can significantly improve coherent communication in terms of performance, power consumption, and simplicity.