Abstract:In medical imaging, accurate image segmentation is crucial for quantifying diseases, assessing prognosis, and evaluating treatment outcomes. However, existing methods lack an in-depth integration of global and local features, failing to pay special attention to abnormal regions and boundary details in medical images. To this end, we present a novel deep learning-based approach, MIPC-Net, for precise boundary segmentation in medical images. Our approach, inspired by radiologists' working patterns, features two distinct modules: (i) \textbf{Mutual Inclusion of Position and Channel Attention (MIPC) module}: To enhance the precision of boundary segmentation in medical images, we introduce the MIPC module, which enhances the focus on channel information when extracting position features and vice versa; (ii) \textbf{GL-MIPC-Residue}: To improve the restoration of medical images, we propose the GL-MIPC-Residue, a global residual connection that enhances the integration of the encoder and decoder by filtering out invalid information and restoring the most effective information lost during the feature extraction process. We evaluate the performance of the proposed model using metrics such as Dice coefficient (DSC) and Hausdorff Distance (HD) on three publicly accessible datasets: Synapse, ISIC2018-Task, and Segpc. Our ablation study shows that each module contributes to improving the quality of segmentation results. Furthermore, with the assistance of both modules, our approach outperforms state-of-the-art methods across all metrics on the benchmark datasets, notably achieving a 2.23mm reduction in HD on the Synapse dataset, strongly evidencing our model's enhanced capability for precise image boundary segmentation. Codes will be available at https://github.com/SUN-1024/MIPC-Net.
Abstract:Great progress has been made in automatic medical image segmentation due to powerful deep representation learning. The influence of transformer has led to research into its variants, and large-scale replacement of traditional CNN modules. However, such trend often overlooks the intrinsic feature extraction capabilities of the transformer and potential refinements to both the model and the transformer module through minor adjustments. This study proposes a novel deep medical image segmentation framework, called DA-TransUNet, aiming to introduce the Transformer and dual attention block into the encoder and decoder of the traditional U-shaped architecture. Unlike prior transformer-based solutions, our DA-TransUNet utilizes attention mechanism of transformer and multifaceted feature extraction of DA-Block, which can efficiently combine global, local, and multi-scale features to enhance medical image segmentation. Meanwhile, experimental results show that a dual attention block is added before the Transformer layer to facilitate feature extraction in the U-net structure. Furthermore, incorporating dual attention blocks in skip connections can enhance feature transfer to the decoder, thereby improving image segmentation performance. Experimental results across various benchmark of medical image segmentation reveal that DA-TransUNet significantly outperforms the state-of-the-art methods. The codes and parameters of our model will be publicly available at https://github.com/SUN-1024/DA-TransUnet.