Abstract:The goals of this dissertation are to fully automate the image processing techniques needed in the post-operative stage of IGCIP and to perform a thorough analysis of (a) the robustness of the automatic image processing techniques used in IGCIP and (b) assess the sensitivity of the IGCIP process as a whole to individual components. The automatic methods that have been developed include the automatic localization of both closely- and distantly-spaced CI electrode arrays in post-implantation CTs and the automatic selection of electrode configurations based on the stimulation patterns. Together with the existing automatic techniques developed for IGCIP, the proposed automatic methods enable an end-to-end IGCIP process that takes pre- and post-implantation CT images as input and produces a patient-customized electrode configuration as output.
Abstract:Cochlear implants (CIs) are a standard treatment for patients who experience severe to profound hearing loss. Recent studies have shown that hearing outcome is correlated with intra-cochlear anatomy and electrode placement. Our group has developed image-guided CI programming (IGCIP) techniques that use image analysis methods to both segment the inner ear structures in pre- or post-implantation CT images and localize the CI electrodes in post-implantation CT images. This permits to assist audiologists with CI programming by suggesting which among the contacts should be deactivated to reduce electrode interaction that is known to affect outcomes. Clinical studies have shown that IGCIP can improve hearing outcomes for CI recipients. However, the sensitivity of IGCIP with respect to the accuracy of the two major steps: electrode localization and intra-cochlear anatomy segmentation, is unknown. In this article, we create a ground truth dataset with conventional CT and micro-CT images of 35 temporal bone specimens to both rigorously characterize the accuracy of these two steps and assess how inaccuracies in these steps affect the overall results. Our study results show that when clinical pre- and post-implantation CTs are available, IGCIP produces results that are comparable to those obtained with the corresponding ground truth in 86.7% of the subjects tested. When only post-implantation CTs are available, this number is 83.3%. These results suggest that our current method is robust to errors in segmentation and localization but also that it can be improved upon. Keywords: cochlear implant, ground truth, segmentation, validation