Abstract:The beetle antennae search algorithm was recently proposed and investigated for solving global optimization problems. Although the performance of the algorithm and its variants were shown to be better than some existing meta-heuristic algorithms, there is still a lack of convergence analysis. In this paper, we provide theoretical analysis on the convergence of the beetle antennae search algorithm. We test the performance of the BAS algorithm via some representative benchmark functions. Meanwhile, some applications of the BAS algorithm are also presented.
Abstract:The paper proposes a novel nature-inspired technique of optimization. It mimics the perching nature of eagles and uses mathematical formulations to introduce a new addition to metaheuristic algorithms. The nature of the proposed algorithm is based on exploration and exploitation. The proposed algorithm is developed into two versions with some modifications. In the first phase, it undergoes a rigorous analysis to find out their performance. In the second phase it is benchmarked using ten functions of two categories; uni-modal functions and multi-modal functions. In the third phase, we conducted a detailed analysis of the algorithm by exploiting its controlling units or variables. In the fourth and last phase, we consider real world optimization problems with constraints. Both versions of the algorithm show an appreciable performance, but analysis puts more weight to the modified version. The competitive analysis shows that the proposed algorithm outperforms the other tested metaheuristic algorithms. The proposed method has better robustness and computational efficiency.
Abstract:In this paper, we extend a bio-inspired algorithm called the porcellio scaber algorithm (PSA) to solve constrained optimization problems, including a constrained mixed discrete-continuous nonlinear optimization problem. Our extensive experiment results based on benchmark optimization problems show that the PSA has a better performance than many existing methods or algorithms. The results indicate that the PSA is a promising algorithm for constrained optimization.
Abstract:Bio-inspired algorithms have received a significant amount of attention in both academic and engineering societies. In this paper, based on the observation of two major survival rules of a species of woodlice, i.e., porcellio scaber, we design and propose an algorithm called the porcellio scaber algorithm (PSA) for solving optimization problems, including differentiable and non-differential ones as well as the case with local optimums. Numerical results based on benchmark problems are presented to validate the efficacy of PSA.