Abstract:Optical coherence tomography (OCT) is a popular modality in ophthalmology and is also used intravascularly. Our interest in this work is OCT in the context of airway abnormalities in infants and children where the high resolution of OCT and the fact that it is radiation-free is important. The goal of airway OCT is to provide accurate estimates of airway geometry (in 2D and 3D) to assess airway abnormalities such as subglottic stenosis. We propose $\texttt{NeuralOCT}$, a learning-based approach to process airway OCT images. Specifically, $\texttt{NeuralOCT}$ extracts 3D geometries from OCT scans by robustly bridging two steps: point cloud extraction via 2D segmentation and 3D reconstruction from point clouds via neural fields. Our experiments show that $\texttt{NeuralOCT}$ produces accurate and robust 3D airway reconstructions with an average A-line error smaller than 70 micrometer. Our code will cbe available on GitHub.
Abstract:Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. We propose a 3D Neural Additive Model for Interpretable Shape Representation (NAISR) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. NAISR is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. Although our driving problem is the construction of an airway atlas, NAISR is a general approach for modeling, representing, and investigating shape populations. We evaluate NAISR with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer for the pediatric upper airway. Our experiments demonstrate that NAISR achieves competitive shape reconstruction performance while retaining interpretability.