Abstract:Solving high-dimensional Bayesian inverse problems (BIPs) with the variational inference (VI) method is promising but still challenging. The main difficulties arise from two aspects. First, VI methods approximate the posterior distribution using a simple and analytic variational distribution, which makes it difficult to estimate complex spatially-varying parameters in practice. Second, VI methods typically rely on gradient-based optimization, which can be computationally expensive or intractable when applied to BIPs involving partial differential equations (PDEs). To address these challenges, we propose a novel approximation method for estimating the high-dimensional posterior distribution. This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters. This enables posterior approximation over the latent variable instead of the complex parameters, thus improving estimation accuracy. Moreover, to accelerate gradient computation, we employ a differentiable physics-constrained surrogate model to replace the adjoint method. The proposed method can be fully implemented in an automatic differentiation manner. Numerical examples demonstrate two types of log-permeability estimation for flow in heterogeneous media. The results show the validity, accuracy, and high efficiency of the proposed method.
Abstract:Estimation of spatially-varying parameters for computationally expensive forward models governed by partial differential equations is addressed. A novel multiscale Bayesian inference approach is introduced based on deep probabilistic generative models. Such generative models provide a flexible representation by inferring on each scale a low-dimensional latent encoding while allowing hierarchical parameter generation from coarse- to fine-scales. Combining the multiscale generative model with Markov Chain Monte Carlo (MCMC), inference across scales is achieved enabling us to efficiently obtain posterior parameter samples at various scales. The estimation of coarse-scale parameters using a low-dimensional latent embedding captures global and notable parameter features using an inexpensive but inaccurate solver. MCMC sampling of the fine-scale parameters is enabled by utilizing the posterior information in the immediate coarser-scale. In this way, the global features are identified in the coarse-scale with inference of low-dimensional variables and inexpensive forward computation, and the local features are refined and corrected in the fine-scale. The developed method is demonstrated with two types of permeability estimation for flow in heterogeneous media. One is a Gaussian random field (GRF) with uncertain length scales, and the other is channelized permeability with the two regions defined by different GRFs. The obtained results indicate that the method allows high-dimensional parameter estimation while exhibiting stability, efficiency and accuracy.