Abstract:The Swin Transformer image super-resolution reconstruction network only relies on the long-range relationship of window attention and shifted window attention to explore features. This mechanism has two limitations. On the one hand, it only focuses on global features while ignoring local features. On the other hand, it is only concerned with spatial feature interactions while ignoring channel features and channel interactions, thus limiting its non-linear mapping ability. To address the above limitations, this paper proposes enhanced Swin Transformer modules via alternating aggregation of local-global features. In the local feature aggregation stage, we introduce a shift convolution to realize the interaction between local spatial information and channel information. Then, a block sparse global perception module is introduced in the global feature aggregation stage. In this module, we reorganize the spatial information first, then send the recombination information into a multi-layer perceptron unit to implement the global perception. After that, a multi-scale self-attention module and a low-parameter residual channel attention module are introduced to realize information aggregation at different scales. Finally, the proposed network is validated on five publicly available datasets. The experimental results show that the proposed network outperforms the other state-of-the-art super-resolution networks.
Abstract:Salt and pepper noise removal is a common inverse problem in image processing. Traditional denoising methods have two limitations. First, noise characteristics are often not described accurately. For example, the noise location information is often ignored and the sparsity of the salt and pepper noise is often described by L1 norm, which cannot illustrate the sparse variables clearly. Second, conventional methods separate the contaminated image into a recovered image and a noise part, thus resulting in recovering an image with unsatisfied smooth parts and detail parts. In this study, we introduce a noise detection strategy to determine the position of the noise, and a non-convex sparsity regularization depicted by Lp quasi-norm is employed to describe the sparsity of the noise, thereby addressing the first limitation. The morphological component analysis framework with stationary Framelet transform is adopted to decompose the processed image into cartoon, texture, and noise parts to resolve the second limitation. Then, the alternating direction method of multipliers (ADMM) is employed to solve the proposed model. Finally, experiments are conducted to verify the proposed method and compare it with some current state-of-the-art denoising methods. The experimental results show that the proposed method can remove salt and pepper noise while preserving the details of the processed image.