Abstract:Coverage of interest points is one of the most critical issues in directional sensor networks. However, considering the remote or inhospitable environment and the limitation of the perspective of directional sensors, it is easy to form perception blind after random deployment. The intension of our research is to deal with the bound-constrained optimization problem of maximizing the coverage of target points. A coverage enhancement strategy based on a discrete army ant search optimizer (DAASO) is proposed to solve the above problem, which is inspired by the biological habits of army ants. A set of experiments are conducted using different sensor parameters. Experimental results verify the effectiveness of the DAASO in coverage effect when compared to the existing methods.
Abstract:As one of the most crucial scenarios of the Internet of Things (IoT), wireless multimedia sensor networks (WMSNs) pay more attention to the information-intensive data (e.g., audio, video, image) for remote environments. The area coverage reflects the perception of WMSNs to the surrounding environment, where a good coverage effect can ensure effective data collection. Given the harsh and complex physical environment of WMSNs, which easily form the sensing overlapping regions and coverage holes by random deployment. The intention of our research is to deal with the optimization problem of maximizing the coverage rate in WMSNs. By proving the NP-hard of the coverage enhancement of WMSNs, inspired by the predation behavior of army ants, this article proposes a novel swarm intelligence (SI) technology army ant search optimizer (AASO) to solve the above problem, which is implemented by five operators: army ant and prey initialization, recruited by prey, attack prey, update prey, and build ant bridge. The simulation results demonstrate that the optimizer shows good performance in terms of exploration and exploitation on benchmark suites when compared to other representative SI algorithms. More importantly, coverage enhancement AASO-based in WMSNs has better merits in terms of coverage effect when compared to existing approaches.
Abstract:Wireless sensor networks (WSNs) are self-organizing monitoring networks with a large number of randomly deployed microsensor nodes to collect various physical information to realize tasks such as intelligent perception, efficient control, and decision-making. However, WSN nodes are powered by batteries, so they will run out of energy after a certain time. This energy limitation will greatly constrain the network performance like network lifetime and energy efficiency. In this study, to prolong the network lifetime, we proposed a multi-hop routing protocol based on game theory and coverage optimization (MRP-GTCO). Briefly, in the stage of setup, two innovational strategies including a clustering game with penalty function and cluster head coverage set were designed to realize the uniformity of cluster head distribution and improve the rationality of cluster head election. In the data transmission stage, we first derived the applicable conditions theorem of inter-cluster multi-hop routing. Based on this, a novel multi-hop path selection algorithm related to residual energy and node degree was proposed to provide an energy-efficient data transmission path. The simulation results showed that the MRP-GTCO protocol can effectively reduce the network energy consumption and extend the network lifetime by 159.22%, 50.76%, and 16.46% compared with LGCA, RLEACH, and ECAGT protocols.
Abstract:Wireless sensor networks (WSNs), one of the fundamental technologies of the Internet of Things (IoT), can provide sensing and communication services efficiently for IoT-based applications, especially energy-limited applications. Clustering routing protocol plays an important role in reducing energy consumption and prolonging network lifetime. The cluster formation and cluster head selection are the key to improving the performance of the clustering routing protocol. An energy-efficient routing protocol based on multi-threshold segmentation (EERPMS) was proposed in this paper to improve the rationality of cluster formation and cluster head selection. In the stage of cluster formation, inspired by multi-threshold image segmentation, an innovative node clustering algorithm was developed. In the stage of cluster head selection, aiming at minimizing the network energy consumption, a calculation theory of the optimal number and location of cluster heads was established. Furthermore, a novel cluster head selection algorithm was constructed based on the residual energy and optimal location of cluster heads. Simulation results show that EERPMS can improve the distribution uniformity of cluster heads, prolong the network lifetime and save up to 64.50%, 58.60%, and 56.15% network energy as compared to RLEACH, CRPFCM, and FIGWO protocols respectively.