Abstract:In real-world scenarios, many large-scale datasets often contain inaccurate labels, i.e., noisy labels, which may confuse model training and lead to performance degradation. To overcome this issue, Label Noise Learning (LNL) has recently attracted much attention, and various methods have been proposed to design an unbiased risk estimator to the noise-free dataset to combat such label noise. Among them, a trend of works based on Loss Decomposition and Centroid Estimation (LDCE) has shown very promising performance. However, existing LNL methods based on LDCE are only designed for binary classification, and they are not directly extendable to multi-class situations. In this paper, we propose a novel multi-class robust learning method for LDCE, which is termed "MC-LDCE". Specifically, we decompose the commonly adopted loss (e.g., mean squared loss) function into a label-dependent part and a label-independent part, in which only the former is influenced by label noise. Further, by defining a new form of data centroid, we transform the recovery problem of a label-dependent part to a centroid estimation problem. Finally, by critically examining the mathematical expectation of clean data centroid given the observed noisy set, the centroid can be estimated which helps to build an unbiased risk estimator for multi-class learning. The proposed MC-LDCE method is general and applicable to different types (i.e., linear and nonlinear) of classification models. The experimental results on five public datasets demonstrate the superiority of the proposed MC-LDCE against other representative LNL methods in tackling multi-class label noise problem.